Loading...
Searching...
No Matches
References
Conformal field theory
-
A.M. Polyakov,
``Conformal symmetry of critical fluctuations,''
JETP Lett. 12 (1970) 381 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 538].
-
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov,
``Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,''
Nucl. Phys. B 241 (1984) 333.
Ginzburg--Landau
-
V.L. Ginzburg and L.D. Landau,
``On the Theory of superconductivity,''
Zh. Eksp. Teor. Fiz. 20 (1950) 1064.
Wess--Zumino model
-
J. Wess and B. Zumino,
``Supergauge Transformations in Four-Dimensions,''
Nucl. Phys. B 70 (1974) 39.
WZ/SCFT correspondence
-
P. Di Vecchia, J.L. Petersen and H.B. Zheng,
``N=2 Extended Superconformal Theories in Two-Dimensions,''
Phys. Lett. B 162 (1985) 327.
-
P. Di Vecchia, J.L. Petersen and M. Yu,
``On the Unitary Representations of N=2 Superconformal Theory,''
Phys. Lett. B 172 (1986) 211.
-
P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng,
``Explicit Construction of Unitary Representations of the N=2 Superconformal Algebra,''
Phys. Lett. B 174 (1986) 280.
-
W. Boucher, D. Friedan and A. Kent,
``Determinant Formulae and Unitarity for the N=2 Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification,''
Phys. Lett. B 172 (1986) 316.
-
D. Gepner,
``On the Spectrum of 2D Conformal Field Theories,''
Nucl. Phys. B 287 (1987) 111.
-
A. Cappelli, C. Itzykson and J.B. Zuber,
``Modular Invariant Partition Functions in Two-Dimensions,''
Nucl. Phys. B 280 (1987) 445.
-
A. Cappelli,
``Modular Invariant Partition Functions of Superconformal Theories,''
Phys. Lett. B 185 (1987) 82.
-
D. Gepner and Z.a. Qiu,
``Modular Invariant Partition Functions for Parafermionic Field Theories,''
Nucl. Phys. B 285 (1987) 423.
-
D. Gepner,
``Space-Time Supersymmetry in Compactified String Theory and Superconformal Models,''
Nucl. Phys. B 296 (1988) 757.
-
A. Cappelli, C. Itzykson and J.B. Zuber,
``The ADE Classification of Minimal and A1(1) Conformal Invariant Theories,''
Commun. Math. Phys. 113 (1987) 1.
-
A. Kato,
``Classification of Modular Invariant Partition Functions in Two-dimensions,''
Mod. Phys. Lett. A 2 (1987) 585.
-
D. Gepner,
``Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy,''
Phys. Lett. B 199 (1987) 380.
Evidence of WZ/SCFT correspondence
-
D.A. Kastor, E.J. Martinec and S.H. Shenker,
``RG Flow in N=1 Discrete Series,''
Nucl. Phys. B 316 (1989) 590.
-
C. Vafa and N.P. Warner,
``Catastrophes and the Classification of Conformal Theories,''
Phys. Lett. B 218 (1989) 51.
-
E.J. Martinec,
``Algebraic Geometry and Effective Lagrangians,''
Phys. Lett. B 217 (1989) 431.
-
W. Lerche, C. Vafa and N.P. Warner,
``Chiral Rings in N=2 Superconformal Theories,''
Nucl. Phys. B 324 (1989) 427.
-
P.S. Howe and P.C. West,
``$N=2$ Superconformal Models, Landau-ginzburg Hamiltonians and the $\epsilon$ Expansion,''
Phys. Lett. B 223 (1989) 377.
-
S. Cecotti, L. Girardello and A. Pasquinucci,
``Nonperturbative Aspects and Exact Results for the $N=2$ Landau-ginzburg Models,''
Nucl. Phys. B 328 (1989) 701.
-
P.S. Howe and P.C. West,
``Chiral Correlators in Landau-ginzburg Theories and $N=2$ Superconformal Models,''
Phys. Lett. B 227 (1989) 397.
-
S. Cecotti, L. Girardello and A. Pasquinucci,
``Singularity Theory and $N=2$ Supersymmetry,''
Int. J. Mod. Phys. A 6 (1991) 2427.
-
S. Cecotti,
``N=2 Landau-Ginzburg versus Calabi-Yau sigma models: Nonperturbative aspects,''
Int. J. Mod. Phys. A 6 (1991) 1749.
-
E. Witten,
``On the Landau-Ginzburg description of N=2 minimal models,''
Int. J. Mod. Phys. A 9 (1994) 4783
[hep-th/9304026].
Nicolai map
-
H. Nicolai,
``On a New Characterization of Scalar Supersymmetric Theories,''
Phys Lett B 89B (1980) 341.
-
H. Nicolai,
``Supersymmetry and Functional Integration Measures,''
Nucl Phys B 176 (1980) 419.
-
G. Parisi and N. Sourlas,
``Supersymmetric Field Theories and Stochastic Differential Equations,''
Nucl Phys B 206 (1982) 321.
-
S. Cecotti and L. Girardello,
``Stochastic And Parastochastic Aspects Of Supersymmetric Functional Measures: A New Nonperturbative Approach To Supersymmetry,''
Annals Phys 145 (1983) 81.
Kikukawa, Kadoh, Suzuki
-
Y. Kikukawa and Y. Nakayama,
``Nicolai mapping versus exact chiral symmetry on the lattice,''
Phys Rev D 66 (2002) 094508
[hep-lat/0207013].
-
D. Kadoh and H. Suzuki,
``Supersymmetric nonperturbative formulation of the WZ model in lower dimensions,''
Phys Lett B 684 (2010) 167
[arXiv:0909.3686 [hep-th]].
-
D. Kadoh,
``Recent progress in lattice supersymmetry: from lattice gauge theory to black holes,''
PoS LATTICE 2015 (2016) 017
[arXiv:1607.01170 [hep-lat]].
-
H. Kawai and Y. Kikukawa,
``A Lattice study of N=2 Landau-Ginzburg model using a Nicolai map,''
Phys Rev D 83 (2011) 074502
[arXiv:1005.4671 [hep-lat]].
-
S. Kamata and H. Suzuki,
``Numerical simulation of the $\mathcal{N}=(2,2)$ Landau-Ginzburg model,''
Nucl Phys B 854 (2012) 552
[arXiv:1107.1367 [hep-lat]].
C-theorem
-
Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory
-
Perturbation Theory of Higher Spin Conserved Currents Off Criticality
Quantum gravity and string theory
-
Quantum gravity and the zero slope limit of the generalized Virasoro model
-
Connection of Dual Models to Electrodynamics and Gravidynamics
-
Geometry, Gravity and Dual Strings
Reviews for string theory
-
An Introduction to the Theory of Dual Models and Strings
-
Superstring Theory
Superstring theory
-
Dual Theory for Free Fermions
-
Quark Model of Dual Pions
-
Factorizable dual model of pions
-
Lorentz covariance and the physical states in dual resonance models
-
Physical States and Pomeron Poles in the Dual Pion Model
-
Spectrum Generating Algebra and No Ghost Theorem for the Neveu-schwarz Model
-
Dual resonance theory
Calabi--Yau manifold
-
Calabi's Conjecture and some new results in algebraic geometry
LG/CY correspondence
-
Geometry of N=2 Landau-Ginzburg families
-
Calabi-Yau Manifolds and Renormalization Group Flows
-
Phases of N=2 theories in two-dimensions
Polchinski
-
String theory. Vol. 1: An introduction to the bosonic string
-
String theory. Vol. 2: Superstring theory and beyond
Citations in review part
-
Gravitation and electricity
-
A New Extension of Relativity Theory
-
Trace anomalies in dimensional regularization
-
Nonlocal Conformal Anomalies
-
Twenty years of the Weyl anomaly
-
An Identity in Quantum Electrodynamics
-
On the generalized Ward identity
-
Subsidiary conditions and ghosts in dual resonance models
-
Contravariant Form for Infinite Dimensional Lie Algebras and Superalgebras
-
Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra
-
Verma modules over the Virasoro algebra
-
Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents
-
Eight vertex SOS model and generalized Rogers-Ramanujan type identities
-
Exact exponents for infinitely many new multicritical points
Traceless energy-momentum tensor
-
Conditions of Weyl Invariance of Two-dimensional $\sigma$ Model From Equations of Stationarity of 'Central Charge' Action
-
Scale and Conformal Invariance in Quantum Field Theory
N=2 unitary minimal model
-
Modular Invariance in $N=2$ Superconformal Field Theories
Scale invariance and conformal invariance
-
Scale invariance vs conformal invariance
Reflection positivity
-
AXIOMS FOR EUCLIDEAN GREEN'S FUNCTIONS
-
Axioms for Euclidean Green's Functions. 2.
-
Gauge Field Theories on the Lattice
-
Quantum fields on a lattice
Non-SUSY LG/CFT correspondence
-
Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory. (In Russian)
Witten index
-
Constraints on Supersymmetry Breaking
-
Functional Measure, Topology and Dynamical Supersymmetry Breaking
4d N=1 SUSY for the Calabi--Yau compactification
-
Vacuum Configurations for Superstrings
Fayet--Iliopoulos D-term
-
Spontaneously Broken Supergauge Symmetries and Goldstone Spinors
SLAC derivative
-
Variational Approach to Strong Coupling Field Theory. 1. Phi**4 Theory
-
Strong Coupling Field Theories. 2. Fermions and Gauge Fields on a Lattice
WZ model based on SLAC derivative
-
SUPERSYMMETRY ON A LATTICE
Locality on SLAC derivative
-
Lattice Supersymmetry
-
The Vacuum Polarization With {SLAC} Lattice Fermions
-
Taming the Leibniz Rule on the Lattice
One-point SUSY WT identity
-
Exact lattice supersymmetry: The Two-dimensional N=2 Wess-Zumino model
Additional links
-
A. Pasquinucci,
``2d N=2 Landau-Ginzburg Models.''
-
D. Kadoh and H. Suzuki,
``Supersymmetry restoration in lattice formulations of 2D $\mathcal{N}=(2,2)$ WZ model based on the Nicolai map,''
Phys Lett B 696 (2011) 163
[arXiv:1011.0788 [hep-lat]].
-
E.J. Martinec,
``Criticality, Catastrophes And Compactifications,''
In *Brink, L. (ed.) et al.: Physics and mathematics of strings* 389-433.
-
L. Brink, D. Friedan and A.M. Polyakov,
``Physics and mathematics of strings: Memorial volume for Vadim Knizhnik,''
Singapore, Singapore: World Scientific (1990) 595 p.
-
C.G. Callan, Jr., S.R. Coleman and R. Jackiw,
``A New improved energy - momentum tensor,''
Annals Phys 59 (1970) 42.
-
G. Mack and A. Salam,
``Finite component field representations of the conformal group,''
Annals Phys 53 (1969) 174.
-
D.J. Gross and J. Wess,
``Scale invariance, conformal invariance, and the high-energy behavior of scattering amplitudes,''
Phys Rev D 2 (1970) 753.
-
A.M. Polyakov,
``Quantum Geometry of Fermionic Strings,''
Phys Lett B 103 (1981) 211
[Phys Lett 103B (1981) 211].