LandauGinzburg
Loading...
Searching...
No Matches
References in the master thesis (inspire-hep)
References

Conformal field theory

A.M. Polyakov, ``Conformal symmetry of critical fluctuations,'' JETP Lett. 12 (1970) 381 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 538].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, ``Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,'' Nucl. Phys. B 241 (1984) 333.

Ginzburg--Landau

V.L. Ginzburg and L.D. Landau, ``On the Theory of superconductivity,'' Zh. Eksp. Teor. Fiz. 20 (1950) 1064.

Wess--Zumino model

J. Wess and B. Zumino, ``Supergauge Transformations in Four-Dimensions,'' Nucl. Phys. B 70 (1974) 39.

WZ/SCFT correspondence

P. Di Vecchia, J.L. Petersen and H.B. Zheng, ``N=2 Extended Superconformal Theories in Two-Dimensions,'' Phys. Lett. B 162 (1985) 327.
P. Di Vecchia, J.L. Petersen and M. Yu, ``On the Unitary Representations of N=2 Superconformal Theory,'' Phys. Lett. B 172 (1986) 211.
P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, ``Explicit Construction of Unitary Representations of the N=2 Superconformal Algebra,'' Phys. Lett. B 174 (1986) 280.
W. Boucher, D. Friedan and A. Kent, ``Determinant Formulae and Unitarity for the N=2 Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification,'' Phys. Lett. B 172 (1986) 316.
D. Gepner, ``On the Spectrum of 2D Conformal Field Theories,'' Nucl. Phys. B 287 (1987) 111.
A. Cappelli, C. Itzykson and J.B. Zuber, ``Modular Invariant Partition Functions in Two-Dimensions,'' Nucl. Phys. B 280 (1987) 445.
A. Cappelli, ``Modular Invariant Partition Functions of Superconformal Theories,'' Phys. Lett. B 185 (1987) 82.
D. Gepner and Z.a. Qiu, ``Modular Invariant Partition Functions for Parafermionic Field Theories,'' Nucl. Phys. B 285 (1987) 423.
D. Gepner, ``Space-Time Supersymmetry in Compactified String Theory and Superconformal Models,'' Nucl. Phys. B 296 (1988) 757.
A. Cappelli, C. Itzykson and J.B. Zuber, ``The ADE Classification of Minimal and A1(1) Conformal Invariant Theories,'' Commun. Math. Phys. 113 (1987) 1.
A. Kato, ``Classification of Modular Invariant Partition Functions in Two-dimensions,'' Mod. Phys. Lett. A 2 (1987) 585.
D. Gepner, ``Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy,'' Phys. Lett. B 199 (1987) 380.

Evidence of WZ/SCFT correspondence

D.A. Kastor, E.J. Martinec and S.H. Shenker, ``RG Flow in N=1 Discrete Series,'' Nucl. Phys. B 316 (1989) 590.
C. Vafa and N.P. Warner, ``Catastrophes and the Classification of Conformal Theories,'' Phys. Lett. B 218 (1989) 51.
E.J. Martinec, ``Algebraic Geometry and Effective Lagrangians,'' Phys. Lett. B 217 (1989) 431.
W. Lerche, C. Vafa and N.P. Warner, ``Chiral Rings in N=2 Superconformal Theories,'' Nucl. Phys. B 324 (1989) 427.
P.S. Howe and P.C. West, ``$N=2$ Superconformal Models, Landau-ginzburg Hamiltonians and the $\epsilon$ Expansion,'' Phys. Lett. B 223 (1989) 377.
S. Cecotti, L. Girardello and A. Pasquinucci, ``Nonperturbative Aspects and Exact Results for the $N=2$ Landau-ginzburg Models,'' Nucl. Phys. B 328 (1989) 701.
P.S. Howe and P.C. West, ``Chiral Correlators in Landau-ginzburg Theories and $N=2$ Superconformal Models,'' Phys. Lett. B 227 (1989) 397.
S. Cecotti, L. Girardello and A. Pasquinucci, ``Singularity Theory and $N=2$ Supersymmetry,'' Int. J. Mod. Phys. A 6 (1991) 2427.
S. Cecotti, ``N=2 Landau-Ginzburg versus Calabi-Yau sigma models: Nonperturbative aspects,'' Int. J. Mod. Phys. A 6 (1991) 1749.
E. Witten, ``On the Landau-Ginzburg description of N=2 minimal models,'' Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026].

Nicolai map

H. Nicolai, ``On a New Characterization of Scalar Supersymmetric Theories,'' Phys Lett B 89B (1980) 341.
H. Nicolai, ``Supersymmetry and Functional Integration Measures,'' Nucl Phys B 176 (1980) 419.
G. Parisi and N. Sourlas, ``Supersymmetric Field Theories and Stochastic Differential Equations,'' Nucl Phys B 206 (1982) 321.
S. Cecotti and L. Girardello, ``Stochastic And Parastochastic Aspects Of Supersymmetric Functional Measures: A New Nonperturbative Approach To Supersymmetry,'' Annals Phys 145 (1983) 81.

Kikukawa, Kadoh, Suzuki

Y. Kikukawa and Y. Nakayama, ``Nicolai mapping versus exact chiral symmetry on the lattice,'' Phys Rev D 66 (2002) 094508 [hep-lat/0207013].
D. Kadoh and H. Suzuki, ``Supersymmetric nonperturbative formulation of the WZ model in lower dimensions,'' Phys Lett B 684 (2010) 167 [arXiv:0909.3686 [hep-th]].
D. Kadoh, ``Recent progress in lattice supersymmetry: from lattice gauge theory to black holes,'' PoS LATTICE 2015 (2016) 017 [arXiv:1607.01170 [hep-lat]].
H. Kawai and Y. Kikukawa, ``A Lattice study of N=2 Landau-Ginzburg model using a Nicolai map,'' Phys Rev D 83 (2011) 074502 [arXiv:1005.4671 [hep-lat]].
S. Kamata and H. Suzuki, ``Numerical simulation of the $\mathcal{N}=(2,2)$ Landau-Ginzburg model,'' Nucl Phys B 854 (2012) 552 [arXiv:1107.1367 [hep-lat]].

C-theorem

Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory
Perturbation Theory of Higher Spin Conserved Currents Off Criticality

Quantum gravity and string theory

Quantum gravity and the zero slope limit of the generalized Virasoro model
Connection of Dual Models to Electrodynamics and Gravidynamics
Geometry, Gravity and Dual Strings

Reviews for string theory

An Introduction to the Theory of Dual Models and Strings
Superstring Theory

Superstring theory

Dual Theory for Free Fermions
Quark Model of Dual Pions
Factorizable dual model of pions
Lorentz covariance and the physical states in dual resonance models
Physical States and Pomeron Poles in the Dual Pion Model
Spectrum Generating Algebra and No Ghost Theorem for the Neveu-schwarz Model
Dual resonance theory

Calabi--Yau manifold

Calabi's Conjecture and some new results in algebraic geometry

LG/CY correspondence

Geometry of N=2 Landau-Ginzburg families
Calabi-Yau Manifolds and Renormalization Group Flows
Phases of N=2 theories in two-dimensions

Polchinski

String theory. Vol. 1: An introduction to the bosonic string
String theory. Vol. 2: Superstring theory and beyond

Citations in review part

Gravitation and electricity
A New Extension of Relativity Theory
Trace anomalies in dimensional regularization
Nonlocal Conformal Anomalies
Twenty years of the Weyl anomaly
An Identity in Quantum Electrodynamics
On the generalized Ward identity
Subsidiary conditions and ghosts in dual resonance models
Contravariant Form for Infinite Dimensional Lie Algebras and Superalgebras
Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra
Verma modules over the Virasoro algebra
Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents
Eight vertex SOS model and generalized Rogers-Ramanujan type identities
Exact exponents for infinitely many new multicritical points

Traceless energy-momentum tensor

Conditions of Weyl Invariance of Two-dimensional $\sigma$ Model From Equations of Stationarity of 'Central Charge' Action
Scale and Conformal Invariance in Quantum Field Theory

N=2 unitary minimal model

Modular Invariance in $N=2$ Superconformal Field Theories

Scale invariance and conformal invariance

Scale invariance vs conformal invariance

Reflection positivity

AXIOMS FOR EUCLIDEAN GREEN'S FUNCTIONS
Axioms for Euclidean Green's Functions. 2.
Gauge Field Theories on the Lattice
Quantum fields on a lattice

Non-SUSY LG/CFT correspondence

Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory. (In Russian)

Witten index

Constraints on Supersymmetry Breaking
Functional Measure, Topology and Dynamical Supersymmetry Breaking

4d N=1 SUSY for the Calabi--Yau compactification

Vacuum Configurations for Superstrings

Fayet--Iliopoulos D-term

Spontaneously Broken Supergauge Symmetries and Goldstone Spinors

SLAC derivative

Variational Approach to Strong Coupling Field Theory. 1. Phi**4 Theory
Strong Coupling Field Theories. 2. Fermions and Gauge Fields on a Lattice

WZ model based on SLAC derivative

SUPERSYMMETRY ON A LATTICE

Locality on SLAC derivative

Lattice Supersymmetry
The Vacuum Polarization With {SLAC} Lattice Fermions
Taming the Leibniz Rule on the Lattice

One-point SUSY WT identity

Exact lattice supersymmetry: The Two-dimensional N=2 Wess-Zumino model

Additional links

A. Pasquinucci, ``2d N=2 Landau-Ginzburg Models.''
D. Kadoh and H. Suzuki, ``Supersymmetry restoration in lattice formulations of 2D $\mathcal{N}=(2,2)$ WZ model based on the Nicolai map,'' Phys Lett B 696 (2011) 163 [arXiv:1011.0788 [hep-lat]].
E.J. Martinec, ``Criticality, Catastrophes And Compactifications,'' In *Brink, L. (ed.) et al.: Physics and mathematics of strings* 389-433.
L. Brink, D. Friedan and A.M. Polyakov, ``Physics and mathematics of strings: Memorial volume for Vadim Knizhnik,'' Singapore, Singapore: World Scientific (1990) 595 p.
C.G. Callan, Jr., S.R. Coleman and R. Jackiw, ``A New improved energy - momentum tensor,'' Annals Phys 59 (1970) 42.
G. Mack and A. Salam, ``Finite component field representations of the conformal group,'' Annals Phys 53 (1969) 174.
D.J. Gross and J. Wess, ``Scale invariance, conformal invariance, and the high-energy behavior of scattering amplitudes,'' Phys Rev D 2 (1970) 753.
A.M. Polyakov, ``Quantum Geometry of Fermionic Strings,'' Phys Lett B 103 (1981) 211 [Phys Lett 103B (1981) 211].